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Abstract

Accurate detection of 3D objects is a fundamental prob-

lem in computer vision and has an enormous impact on

autonomous cars, augmented/virtual reality and many ap-

plications in robotics. In this work we present a novel

fusion of neural network based state-of-the-art 3D detec-

tor and visual semantic segmentation in the context of

autonomous driving. Additionally, we introduce Scale-

Rotation-Translation score (SRTs), a fast and highly pa-

rameterizable evaluation metric for comparison of object

detections, which speeds up our inference time up to 20%

and halves training time. On top, we apply state-of-the-art

online multi target feature tracking on the object measure-

ments to further increase accuracy and robustness utilizing

temporal information. Our experiments on KITTI show that

we achieve same results as state-of-the-art in all related cat-

egories, while maintaining the performance and accuracy

trade-off and still run in real-time. Furthermore, our model

is the first one that fuses visual semantic with 3D object de-

tection.

1. Introduction

Over the last few years self-driving cars got more and

more into the focus of the automotive industry as well as

new mobility players. Today, commercial vehicles already

offer manifold automation like assisted or automated park-

ing, adaptive cruise control and even highway pilots. To

reach the full level of automation, they require a very pre-

cise system of environmental perception, working for ev-

ery conceivable scenario. Additionally, real world scenarios

strictly require real-time performance.

Recent vehicles are equipped with multiple different

kind of sensors like ultrasonics, radar, cameras and Lidar

(light detection and ranging) as well. With the help of re-

dundancy and sensor fusion, relevant reliability and safety

can be achieved. These circumstances significantly boosted

the rapid development of sensor technology and the growth

of artificial intelligence algorithms for fundamental tasks

like object detection and semantic segmentation.

Many modern approaches for these tasks use camera, Li-

dar or combine both. Compared to camera images, there

are some difficulties dealing with Lidar point cloud data.

Such point clouds are unordered, sparse and have a highly

varying density due to the non-uniform sampling of the 3D

space, occlusion and reflection. On the other hand, they

offer way higher spatial accuracy and reliable depth infor-

mation. Therefore, Lidar is more common in the context of

autonomous driving. In this paper, we propose Complexer-

YOLO, a real-time 3D object detection and tracking on se-

mantic point clouds (see Fig. 1, 2). The main contributions

are:

• Visual Class Features: Incorporation of visual point-

wise Class-Features generated by fast camera-based

Semantic Segmentation [39].

• Voxelized Input: Extension of Complex-YOLO [42]

processing voxelized input features with a variable

depth of dimension instead of fixed RGB-maps.

• Real 3D prediction: Extension of the regression net-

work to predict 3D box heights and z-offsets to treat

targets in three dimensions.

• Scale-Rotation-Translation score (SRTs): We intro-

duce SRTs, a new validation metric for 3D boxes, no-

tably faster than intersection over union (IoU), consid-

ering the 3DoF pose of the detected object including

the yaw angle such as width, height and length.

• Multitarget-Tracking: Application of an Online fea-

ture tracker decoupled from the detection network, en-

abling time depending tracking and target instantiation

based on realistic, physical assumptions.

• Realtime capability: We present a complete novel

tracking pipeline with an outstanding overall real-time

1 1



Input Lidar 
Point Cloud (t)

GT Boxes

Voxelized Semantic 
Point Cloud (t)

Point to Semantic Image Projection

Input RGB Image (t)

Lidar + RGB  
Stream (t … t-n)

Joint Object Detection and
 Extended Target Model

Complex Yolo (V3) 
Real 3D Multi-Class-Predictions 

b) c)

b.5)

Tracked
Instancesa)                           b)                                  c)                                                                                                        d)

b.1)

b.2)

b.3)

b.4)

Tr
ac

ki
ng

 P
ip

el
in

e
3D

 D
et

ec
tio

n 
P

ip
el

in
e

Frame-Wise 
3D Object 
Predictions

Complex
YOLO

ENet

Figure 1: The Complexer-YOLO processing pipeline: We present a novel and complete 3D Detection (b.1-5) and Tracking

pipeline (a,b,c,d,e) on Point Clouds in Real-Time. The Tracking-Pipeline is composed by: (a) Lidar + RGB frame grabbing

from stream, (b) Frame-wise Complex-YOLO 3D Multiclass predictions, (c) Joint Object and extended Target Model for

feature Tracking and (d) 3D object instance tracking within the environmental model. In detail (b) is composed by: (1) The

Voxelization of the Lidar frame, (2) the Semantic Segmentation of the RGB image with the aid of ENet, (3) the Point-wise

classification by Lidar to Semantic-Image backprojection, (4) the generation of the Semantic Voxel Grid and finally (5): The

real 3D Complex YOLO for 3D Multi-class predictions. (see Fig. 2 for more details)

capability, despite state-of-the-art results on semantic

segmentation, 3D object detection such as Multitarget-

Tracking. The pipeline can be directly brought into

every self-driving cars percepting urban scenes.

2. Related Work

In this section, we provide an overview of convolutional

neural network (CNN) based object detection, semantic

segmentation and multi target tracking.

2.1. 2D Object Detection

Over the last few years many methods for robust and

accurate object detection using CNN have been developed.

Starting in 2D space on single images, two-stage detectors

[35, 12] and one-stage detectors [32, 24, 33, 23, 34, 15]

achieved state-of-the-art results, targeting the output of lo-

cated 2D bounding boxes. Typically, two-stage detectors

exploit object proposals and utilize region of interests (RoI)

with the help of region proposal networks (RPN) in a first

step. Afterwards, they generate the final object predictions

using calculated features over the proposed RoIs. As a

trade-off for runtime, one-stage detectors skip the proposal

generation step and directly output the final object detec-

tions. They are usually capable of real-time performance,

but mainly outperformed by two-stage detectors in terms

of accuracy. YOLOv3 [34], one of the one-stage detec-

tors, combines findings from [32, 33, 11, 22]. It divides

the image into a sparse grid, performs multi-scale feature

extraction and directly outputs object predictions per grid

cell, using dimension clusters as anchor boxes [33].

2.2. 3D Object Detection

Although CNNs were originally designed for image pro-

cessing, they became a key component for 3D object detec-

tion as well. First ideas were to use stereo images as input

[3]. Followed by [19] and [6], where 3D convolutions were

applied to a voxelized representation of point cloud data

and features extracted using 3D CNNs [43], respectively. In

2



[49], voxel feature encoding was introduced and again pro-

cessed by CNN to predict objects. Furthermore, VeloFCN

[20] created depth maps with the help of front-view pro-

jections of 3D point clouds and applied CNN. In contrast,

MV3D [4] merged image input with a multi-view represen-

tation of point cloud data projected into 2D space. Alterna-

tively, [16] aggregated features from image and birdseye-

view representation of point clouds. Another method to

fuse camera and Lidar inputs was explored in [28]. In a

first step, sub point clouds were extracted in viewing frus-

tums detected by a 2D CNN. Afterwards, a PointNet [29]

predicts 3D objects within the frustum point clouds. Re-

cently, PointNet was also used in [45] in combination with

2D CNN and a fusion network. Further similar approaches

using birdseye-view representations of point clouds were

[25, 47, 42, 1].

2.3. Semantic Segmentation

The goal of semantic segmentation is to classify each

pixel of an image into a predefined class. This task is typ-

ically achieved by CNNs. Several widely used network ar-

chitectures have been introduced, e.g. [10, 27, 37, 21]. Sim-

ilar to the object detection task, there is a trade-off between

accuracy and runtime. Therefore, approaches like convo-

lutional factorization, e.g. applied in [14, 26], quantization

[30], pruning [13] and dilated convolutions, e.g. applied in

[48], came up. ENet [27], one of the most efficient models

used a special encoder-decoder structure to highly reduce

computational effort. Recently, [39] applied the Channel

Pruning method [13] to the ENet to make it more efficient.

2.4. Multi Target Tracking

The task of multi-object tracking (MOT) is usually

solved in two phases. First, an algorithm detects objects

of interests and second, identical objects in different frames

are associated. A widespread approach is using global

information about the detections [17, 7]. In contrast to

this, online approaches don’t have any knowledge of future

frames. With this characteristic they have one significant

advantage: they are usable in real-world scenarios. Re-

cent work focused especially on tracking of 2D objects from

camera input [40, 41]. Online multi-target 3D object track-

ing based on detections from algorithms with point cloud

inputs aren’t popular until now. The basics of the Labeled

Multi-Bernoulli Filter, which we use for multi target track-

ing, are explained in the following.

The state xi
t of the ith target at discrete time t is a random

variable. The set of all targets at time step t is a subset of

the state space X and then denoted by

Xt =
{

xi
t

}Nx

t

i=1
⊂ X. (1)

In turn, the set cardinality Nx
t = |Xt| at time t is a discrete

random variable.

The set of all measurements at time t is again modeled

as a random set with set cardinality Nz
t = |Zt| and denoted

by

Zt =
{

zit
}Nz

t

i=1
⊂ Z. (2)

Each individual measurement zit is either target-

generated or clutter. Yet the true origin is assumed un-

known. Further, the set of all measurements up to and in-

cluding the time step t is denoted by

Z
t =

t
⋃

τ=1

Zτ . (3)

Both above sets are without order, i.e. the particular choice

of indices is arbitrary. Targets and measurements are mod-

eled as Labeled Multi-Bernoulli Random Finite Sets (LMB

RFS) as proposed in [2]. A Bernoulli RFS is a set that is

either empty with probability 1− r or contains a single ele-

ment. As in [36], the probability density of a Bernoulli RFS

may be written as

π(X) =

{

1− r, if X = ∅,

r p(x), if X = {x}
(4)

with p(·) a spatial distribution on X. A Multi-Bernoulli

RFS is then the union of independent Bernoulli RFSs, i.e.

XMB =
⋃

i X
(i)
B . In turn a Multi-Bernoulli RFS is well-

defined by the parameters {r(i), p(i)}i.
Labeled RFS allow the estimation of both the targets’

state and their individual trajectories. For this reason the

target state is extended by a label l ∈ L, i.e. each single

target state is given by x = (x, l) and in turn the multi-

target state X lives on the product space X × L with L a

discrete space. Note that this definition does not enforce the

labels l to be distinct. [44] introduced the so called distinct

label indicator

∆(X) := δ|X|(|L(X)|) (5)

that enforces the cardinality of X to be identical to the

cardinality of the projection L(X) = {L(x) : x ∈ X},

L(x) = l. Together with Eq. 4, it follows that the probabil-

ity density of a LMB RFS is well-defined by the parameter

set {r(l), p(l)}l∈L and the cardinality distribution yields

ρ(n) =
∏

i∈L

(1− r(i))
∑

L∈Fn(L)

∏

l∈L

r(l)

1− r(l)
(6)

with Fn(L) the set of all subsets of L containing n ele-

ments.

The core objective of the multi-target tracking is to ap-

proximate the multi-target distribution ft|t(Xt|Z
t) in each
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time step t. This is achieved with the multi-target Bayes

filter,

ft|t(Xt|Z
t) =

ft(Zt|Xt)ft|t−1(Xt|Z
t−1)

∫

ft(Zt|Xt)ft|t−1(Xt|Zt−1)δXt

(7)

and the Chapman-Kolmogorov prediction

ft+1|t(Xt+1|Z
t) =

∫

ft+1|t(Xt+1|Xt)ft|t(Xt|Z
t)δXt

(8)

with ft(Zt|Xt) the multi-target measurement set density

and ft+1|t(Xt+1|Xt) the multi-target transition density.

3. Joint Detection and Extended Target Model

3.1. Point Cloud Preprocessing

First, we generate a semantic segmentation map of the

front camera images using the efficient model from [39],

pre-trained on [5] and fine tuned on KITTI [8]. Second,

we quantize the point cloud to a 3D voxel representation,

which is able to contain certain features of the points that

lie within such a voxel. Our region of interest of the point

cloud is set to [0, 60]m × [−40, 40]m × [−2.73, 1.27]m in

sensor coordinates, according to the KITTI [8] dataset. We

chose a resolution of 768× 1024× 21 resulting in approxi-

mately 0.08m×0.08m×0.19m per cell. Each voxel, where

at least one point exists inside its 3D space and is visible to

the front camera, is filled with a normalized class value ex-

tracted from the semantic map in range [1, 2]. Therefore,

we project all relevant points into the image using calibra-

tions from [8] and argmax over the frequency of all resolved

classes. In this way, contextual information with visual fea-

tures are passed into our voxel map, which is especially

helpful for higher ranges with low density of points.

3.2. Voxel based Complex­YOLO

We use the full detection pipeline introduced in [42], but

exchange the input map for our voxel representation. In-

spired by [34], we exchange max-pooling layers by convo-

lutions with stride 2 and add residual connections. Alto-

gether, we have 49 convolutional layers. Additionally, we

add object height h and ground offset z as target regres-

sion parameters and incorporate both into the multi-part loss

function.

L =LEuler

+ λcoord

S2

∑

i=0

B
∑

j=0

✶
obj
ij

[

(hi − ĥi)
2 + (zi − ẑi)

2
] (9)

Usually IoU is used to compare detection and ground

truth during the training process. However, it has drawbacks

when comparing rotated bounding boxes. If two boxes are

compared with the same size and position and an angle dif-

ference of π the IoU between these two boxes is 1, which

means they match perfectly. This is obviously not the case

since the angle between the two boxes has the maximum

difference it can have. So while training a network it is

not penalized and even encouraged by predicting boxes like

these. This leads to wrong predictions for the object orien-

tation. Also calculating an exact IoU for rotated bounding

boxes in 3D space is a time consuming task.

To overcome these two problems we introduce a new

highly parameterizable simple evaluation metric called

Scaling-Rotation-Translation score (SRTs). The SRTs is

based on the fact, that given two arbitrary 3D objects of

the same shape, one can be transformed into the other using

a transformation. Therefore, we can define a score Ssrt as

composite of independent scores for scaling Ss, rotation Sr

and translation St with

Ss = 1−min

(

|1− sx|+ |1− sy|+ |1− sz|

ws

, 1

)

(10)

Sr = max
(

0, 1−
θ

wrπ

)

, wr ∈ (0, 1] (11)

ri =
di · wt

2
, i ∈ {1, 2} (12)

St = max
(

0,
r1 + r2 − t

r1 + r2

)

(13)

pt =

{

0, if r1 + r2 < t

1, otherwise
(14)

where sx,y,z denotes size ratios in x, y, z directions, θ

denotes the difference of the yaw angles, t the Euclidean

distance between the two object centers and pt is a penalty

if the objects do not intersect. St is calculated in respect

to the size of the two objects, because for small objects a

small translation can already have a big impact and vice

versa for large objects. So the length of the diagonals di of

both objects are used to calculate two radii ri.

To adjust the score ws, wt and wr can be used. They

control how strict the individual scores are. We used ws =
0.3, wt = 1 and wr = 0.5

All the previous scores are in the interval [0, 1] and

can be combined into the final score (Ssrt) using a simple

weighted average and the penalty pt.

Ssrt = pt · (α Ss + β St + γ Sr) (15)

α+ β + γ = 1

Using α, β, γ the weight of the three sub scores can be

defined. We used γ = 0.4 and α = β = 0.3 to give more
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Figure 2: Overview of our architecture.

weight to the angle, because translation and scaling are eas-

ier to learn for the network.

SRTs perfectly lines up with the three subtasks (rota-

tion, position, size) a network has to do in order to pre-

dict 3D boxes with a yaw angle. It is designed so it can

be parametrized to approximate the IoU but considers ob-

ject orientations. Using all the parameters the score can be

adjusted to suit the needs of the problem.

3.3. Extended target model in the LMB RFS

To apply the RFS approach to the output of the YOLO

network, which consists of boxes in the three dimen-

sional space, we interpret the output as Gaussian noise

corrupted measurements zit , i ∈ {1, . . . , Nz
t } of the po-

sitional parameters (see Eq. 2) and extend those as ex-

tended targets [9] xi
t, i ∈ {1, . . . , Nx

t } (see Eq. 1)

with the measurement noise covariance matrix R =
diag(0.52, 0.52, 0.52, 0.52, 0.52, 0.12). The target is as-

sumed to move according to a coordinated turn mo-

tion model [38] with the process noise covariance Q =
diag(σ2

a, σ
2
α) consisting of the standard deviation of the ac-

celeration σa = 17.89 and the yaw rates derivative σα =
1.49.

The individual measurements z consist of the box center

position c = [x, y, z] in the three dimensional space, the box

dimension (length, width, height) s = [l, w, h] and the box

orientation along the first dimensions φi
t (yaw), such that

z = [c, s, φ] . (16)

The extended target state mean x̄i
t used for tracking con-

tains the same parameters as the measurements as well as

motion parameters of the coordinated turn model consisting

of the velocity v and yaw rate φ̇. The state mean of the ith

target at time t can be described as

x̄i
t = [cit, s

i
t, φ

i
t, v

i
t, φ̇

i
t] (17)

with the according state covariance matrix P̄ i
t . We can state

the measurement equation

z = H · x̄ (18)

for an individual measurement z and the target mean x̄, with

the measurement matrix

H =
(

I7 0
)

∈ R
7×9, (19)

where I7 is the identity matrix of dimension 7. Based on

this measurement equation, a Bayesian filter can be defined

where the innovation is calculated using a Kalman filter up-

date according to the stated measurement model. The pre-

diction is performed using an Unscented Kalman filter ac-

cording to the assumed nonlinear coordinated turn model

[38].

In the LMB update step each predicted target is associ-

ated with each measurement of the time step and an update

according to the defined measurement model is performed.

A heatmap is generated from the update likelihood, model-

ing the association probabilities based on which targets will

be kept or discarded. Be pa(x
i, zj) the association proba-

bility of the measurement zj and the state xi. If the non-

assignment probability

pna(z
j) = 1−

∑

xi∈X

pa(x
i, zj) (20)

is higher than a threshold Pna, we assume that a new target

is born from an unexplained measurement.

The number Ne of targets to be extracted is derived from

the mean of the cardinality distribution presented in Eq. 6.

All Ne targets with the highest existence probability r(l) are

extracted.

4. Experiments

We evaluate Complexer-YOLO on the KITTI bench-

marks for 3D object detection and bird’s eye view (BEV)

detection. Furthermore, we evaluate the capabilities of our

multi target tracking with the help of the object tracking
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benchmark. Our ablation studies investigate the importance

of different input features encoded in our voxel represen-

tation and show further findings. Finally, some qualitative

results visualize the outcome of our model.

4.1. Training Details

The KITTI dataset [8] consists of 7481 training images

and 7518 testing images. First, we follow [4] and use the

training/validation split to optimize our settings. After-

wards, we use the full training set for the official evaluation.

We augment the training dataset with rotation and increase

the size by a factor of 4. Therefore, we randomly pick 3 an-

gles between [−20, 20] deg with a minimum difference of

8 deg to each other. Similar to [47], we use random flipping

along the x axis during training.

For training, we use an extended version of the darknet

framework [31]. We train the model from scratch for 140k

iterations with learning rate scaled at 20k, 80k and 120k

iterations respectively.

4.2. Detection Results

We submitted our results to the KITTI vision benchmark

suite [8] for Orientation Similarity, BEV, 3D Object Detec-

tion and Object Tracking benchmarks on the official test set.

To achieve a fair comparison, we only selected some of the

leading 3D object detectors that are able to detect at least

classes Car, Pedestrian and Cyclist. For tracking, only on-

line methods are listed.

We show evaluation results for Orientation Similarity,

BEV and 3D object detection in Table 1. Table 2 shows

our results in MOT accurancy and precision (MOTA and

MOTP), mostly tracked (MT) and mostly lost (ML).

Unfortunately, the whole evaluation process is based on

2D bounding boxes in camera space due to the handling of

Dontcare labels and ignored objects, e.g. truncated or oc-

cluded (see [8]). Following the 2D Object Detection Bench-

mark, which is accompanied with BEV and 3D, we achieve

79.31% for class Car in moderate difficulty. Also, Orien-

tation for these settings is ranked at 79.08%. However, our

algorithm detects and tracks bounding boxes in 3D space.

Therefore, all detections are projected to the image plane.

Although we do not track in image space, we achieve state-

of-the-art results while running in real-time using our track-

ing (visualization Fig. 6). Moreover we are the first one

with 3D tracking based on point cloud detections on the

KITTI tracking benchmark. But there is an inconsistency

compared to BEV and 3D results, where we achieve only

66.07% and 49.44% respectively. Based on less than 50%
AP in 3D space, tracking is not able to reach actual results,

which we think mainly comes from wrongly counted Dont-

care objects. In opposition to the KITTI guidelines, we

found that their current object detection evaluation scripts

fully ignore Dontcare labels for BEV and 3D Object detec-

tion benchmarks. All such detections count as false posi-

tives, which is crucial in our case. Furthermore, most 2D

ground truth bounding boxes for class Pedestrian are man-

ually refined and do not match a reprojected bounding box

from 3D space anymore, which leads to additional wrongly

counted false positives, when ignored objects are assigned.

Fig. 3 shows outstanding results on several sequences

with different use cases. Our model is able to detect accu-

rate rotated bounding boxes in 3D space for multiple classes

even though the strongly unbalanced dataset. With the help

of voxelized semantic features, the network is able to detect

even small objects like pedestrians or cyclist, as long as they

have a minimum spatial distance to other appearing objects.

Method FPS
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Orientation

AVOD-FPN [16] 10.0 89.95 87.13 79.24 53.36 44.92 43.77 67.61 57.53 54.16

SECOND [46] 20.0 87.84 81.31 71.95 51.56 43.51 38.78 80.97 57.20 55.14

BirdNet [1] 9.1 50.85 35.81 34.90 21.34 17.26 16.67 41.48 30.76 28.66

Complexer-YOLO 15.6 87.97 79.08 78.75 37.80 31.80 31.26 64.51 56.32 56.23

BEV

F-PointNet [28] 5.9 88.70 84.00 75.33 58.09 50.22 47.20 75.38 61.96 54.68

AVOD-FPN [16] 10.0 88.53 83.79 77.90 58.75 51.05 47.54 68.09 57.48 50.77

VoxelNet [49] 4.4 89.35 79.26 77.39 46.13 40.74 38.11 66.70 54.76 50.55

BirdNet [1] 9.1 75.52 50.81 50.00 26.07 21.35 19.96 38.93 27.18 25.51

Complexer-YOLO 15.6 74.23 66.07 65.70 22.00 20.88 20.81 36.12 30.16 26.01

3D

F-PointNet [28] 5.9 81.20 70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39

AVOD-FPN [16] 10.0 81.94 71.88 66.38 50.80 42.81 40.88 64.00 52.18 46.61

VoxelNet [49] 4.4 77.47 65.11 57.73 39.48 33.69 31.51 61.22 48.36 44.37

BirdNet [1] 9.1 14.75 13.44 12.04 14.31 11.80 10.55 18.35 12.43 11.88

Complexer-YOLO 15.6 55.63 49.44 44.13 19.45 15.32 14.80 28.36 23.48 22.85

Table 1: Evaluation of orientation, bird’s eye view and 3D

detection. Frames per second (FPS) and APs (in %) on

KITTI test set.

Method MOTA [%] MOTP [%] MT [%] ML [%] FPS

MOTBeyondPixels [41] 84.24 85.73 73.23 2.77 3.3

IMMDP [41] 83.04 82.74 60.62 11.38 5.3

3D-CNN/PMBM [40] 80.39 81.26 62.77 6.15 100

mbodSSP [18] 72.69 78.75 48.77 8.77 100

Ours 75.70 78.46 58.00 5.08 100

Table 2: Comparison with non-anonymous pure online sub-

missions on KITTI MOT benchmark [8].

4.3. Ablation Study

We conducted ablation experiments with fixed training

setup to investigate the influence of our hyper parameters

and several input features. The use of 21 height channels

for our voxel map results in similar mAP at IoU threshold

0.7 as using 51 channels (cuboidal voxels). It seems that

our network is not able to fully utilize fine grained height

information. Furthermore, it is the best trade-off for run-

time and accuracy, because runtime was slightly increasing
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Figure 3: Qualitative results. For visualization, our detections are projected into camera space with overlayed pixel wise

semantic segmentation.

for more than 21 height channels with our hardware setup.

Table 3 shows results using different voxel maps with in-

tensity values from Lidar sensor normalized in range [1, 2],
binary occupancy similar to [25] and our novel semantic

map. Additionally, the approach from [42] using extracted

features encoded as an RGB image is listed.

In order to reduce wrongly counted false positives due to

ignored Dontcare labels, we tried to filter our detections in

a post processing step. Therefore, we counted the number

of 3D points falling into each 3D bounding box. All de-

tections with less then 13 points and less than 52m radial

distance to the Lidar sensor were removed, because Dont-

care is often used for objects at higher distances or occluded

objects. This improved all object detection results by 1.3%

on average, but decreased e.g. BEV for Car on moderate

difficulty by 4.8%. Consequently, our filter removed a few

Dontcare or ignored detections, but removed correct ones

as well. Also, it seemed to have stronger impact on moder-

ate settings since valid easy detections are all in near range,

which explains AP drops from easy.

Finally, using SRTs for training instead of IoU gives

1.3% improvement on mAP at IoU 0.7 as it directly penal-

izes orientation. It also halved our training time and resulted

in a 10-20% runtime improvement for inference.

Additionally, we tried to limit object rotations into sub-

sections using anchors instead of complex angles for the

full 360 deg, but this decreased accuracy. Further investiga-

tion is required here, because we see a potential reduction

7
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Figure 4: Results for the orientation benchmark compared

to SECOND [46], BirdNet [1], AVOD-FPN [16] on official
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Figure 5: The Complexer-YOLO runtime evaluation (refer-

ence hardware: NVIDIA GTX1080i/Titan) shows state-of-

the-art results of all single tasks (Semantic Segmentation,

3D object detection (BEV, cars → hard, Tab. 1), Tracking

Tab. 2). Results for Semantic Segmentation are taken from

the KITTI leader board. We point out, that our overall De-

tection and Tracking Pipeline is faster than many single task

algorithms.

in complexity for the learning task of the network.

Feature IoU 0.7 SRTs 0.7

RGB 28.64 30.02

Occupancy 31.93 33.24

Intensity 32.39 33.57

Semantic 34.14 35.43

Table 3: Ablation study of different input features. mAP

values (in %) for the 3D benchmark on KITTI validation

set.

5. Conclusion

In this work we propose Complexer-YOLO, a tracked

real-time 3D object detector that operates on point clouds

fused with visual semantic segmentation. Our architecture

-10                 0               10  (m)

60

40

20

0

-20
(m)

Figure 6: Tracked objects trajectories.

takes advantage of both spatial Lidar data and explored

scene understanding from 2D. Detection results obtained

from 3D space show competitive performance on KITTI

benchmarks [8] compared to state-of-the-art. At the same

time, we introduce SRTs, a powerful, more flexible and sim-

plified evaluation metric for object comparison that over-

comes the limits of IoU.
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